Year: 12 Subject: Further Maths A level	Curriculum Intent: Some pure topics from A Level mathematics are Algebraic work with series is extended. The pow Complex numbers are introduced and lead to so Matrices are used to solve systems of equations problems involving lines and planes. In statisrtics situations are modelled by discrete Squared tests. Bivariate data are investigated, w regression. Algorithms play a central part in the modern wo Algorithms can be run by hand, but when algoritheir application to authentic problems. A range these can be formulated as linear programming	Acs are introduced. In various contexts. rigonometry. Inds are applied to ested using Chi odelling using In their own right. Hen technology allows roduced. Many of chnology.		
	Term 1	Term 2		
Topic Titles (in order of delivery)	1. Complex Numbers 1. Roots of Polynomials 2. Matrices 2. Sequences and Series 3. Vectors 4. Algorithms	51.Statistical Problem Solving1.Modelling with Graphs and Networks2.Discrete Random Variables2.Networks3.Discrete Probability Distributions2.Network Algorithms4.Bivariate, Measuring Correlation4.Linear Programming5.Simplex Method	I.Bivariate, Linear RegressionI.Reformulating Network Proble and Linear Programming Problems2.Bivariate, Chi Squared TestsI.Reformulating Network Proble and Linear Programming Problems3.MatricesProblems4.Vectors2.Forces and Motions3.A Model for FrictionFriction Analysis	ms
Key knowledge / Retrieval topics	1. Complex Numbers: 1. Roots of • Understand the Polynomials: • Ianguage of complex • Understand and use numbers. • Understand and use the relationships • Be able to solve any between the roots and coefficients of quadratic equation with real coefficients. quadratic, cubic and • Know that the complex • Be able to form a roots of polynomial • Be able to form a equations with real • mew equation whose	1.Statistical Problem Solving1.Modelling with Graphs and•Be able to explain the importance of sample size in experimental design.•Understand and be able to use graphs and associated language.•Be able to explain 	1. Bivariate, Linear Regression: 1. Reformulating Network Proble and Linear • Be able to calculate the equation of the least squares regression line using raw data or summary statistics. • Reformulating Network Proble Programming Problems • Be able to calculate the equation of the least squares regression line using raw data or summary statistics. • Recognise wher LP requires an integer solution	י ms ו an

	 coefficients occur in conjugate pairs. Be able to solve cubic or quartic equations with real coefficients. Be able to add, subtract, multiply and divide complex numbers given in the form x + yi, x and y real. Understand that a complex number is zero if and only if both the real and imaginary parts are zero. Be able to use radians in the context of complex numbers. Be able to represent a complex number in modulus-argument form. Be able to convert between the forms z = x + yi and z = r (cos θ + i sin θ) where r is the modulus and θ is the argument of the complex number. Be able to represent and interpret complex numbers and their conjugates on an Argand diagram. Be able to represent the sum, difference, product and quotient of two complex numbers on an 	2. • •	roots are related to the roots of a given equation by a linear transformation. Sequences and Series: Be able to use standard formulae for Σr , $\Sigma r^2 and \Sigma r^3$ and the method of differences to sum series. Be able to construct and present a proof using mathematical induction for given results for a formula for the nth term of a sequence, the sum of a series or the nth power of a matrix. Vectors: Know how to calculate the scalar product of two vectors, and be able to use the two forms of thescalar product to find the angle between two vectors. Be able to form and use the vector and cartesian equations of a plane. Convert between vector and cartesian forms for the equation of a plane. Know that a vector	• • •	order to obtain information about a population, and give desirable features of a sample. Be able to explain the advantage of using a random sample when inferring properties of a population. Discrete Random Variables: Be able to use probability functions, given algebraically or in tables. Be able to calculate the numerical probabilities for a simple distribution. Be able to draw and interpret graphs representing probability distributions. Be able to calculate the expectation (mean), $E(X)$, and understand its meaning. Be able to use the treuwhole, $Var(X)$, and	• 2. • • • 3.	Understand that a network is a graph with weighted arcs. Be able to model problems by using networks. Network Algorithms Be able to solve minimum connector problems using Kruskal's and Prim's algorithms. Model shortest path problems and solve using Dijkstra's algorithm. Know and use the fact that Kruskal's, Prim's and Dijkstra's algorithms have quadratic complexity. Further Network Problems: Model precedence problems with an activity-on-arc network. Use critical path analysis and be able to interpret outcomes, including implications for criticality. Be able to analyse	•	model to estimate values and know when it is appropriate to do so. Know the meaning of the term residual and be able to calculate and interpret residuals. Be able to calculate the equation of the two least squares regression lines, y on x and x on y, using raw data or summary statistics. Be able to use either regression line to estimate the expected value of one variable for a given value of the other and know when it is appropriate to do so. Check how well the model fits the data. Know the relationship between the two regression lines and when to use one rather than the other. Be able to use the correct regression line to estimate the	• • •	Be able to formulate a range of network problems as LPs. Forces and Motions Understand the language relating to forces. Understand that the value of the normal reaction depends on the other forces acting and why it cannot be negative Be able to resolve a force into components and be able to select suitable directions for resolution. Be able to find the resultant of several concurrent forces by vector addition. Know that a particle is in equilibrium under a set of concurrent forces if and only if their resultant is zero. Know that a closed figure may be drawn to represent the addition of the forces on an object in equilibrium. Be able to
	complex numbers on an Argand diagram.		which is perpendicular to a	•	Be able to use the result $E(a + bX) =$ a + bE(X)	•	Be able to analyse float (total, independent and interfering),		expected value of one variable for a	•	Be able to formulate and solve equations for equilibrium by

Be able to represent and	nlane i	s		and understand its		resourcing and		given value of the		resolving forces in
interpret sets of	nerner	dicular to any		meaning		scheduling		other and know		suitable directions
complex numbers as loci	Vector	in the nlane	•	Reable to use the		Be able to use a		when it is		or by drawing and
on an Argand diagram	• Knowd	he different	•	recult	•	be able to use a		annronriate to do		using a polygon of
1 Matricac:		ne unerent		Var(a + bV)		a transmission				forcos
1. Watrices.	ways ii			$-h^2 Var(X)$			2	su. Bivariata Chi	2	A Model for
Be able to add, subtract	distinc	planes can be		$= D^{-} V ar(X)$	•	system.	Ζ.	Bivariate, Chi	3.	A Wodel for
and multiply	arrang	ed in 3-D			•	Be able to specify a		Squared Tests:		Friction
conformable matrices,	space.			meaning.		cut and calculate	•	Be able to interpret	•	Understand that
and to multiply a matrix	Be able	e to solve three	•	Be able to find the		its capacity.		bivariate		bodies in contact
by a scalar.	linear s	imultaneous		expectation of any	•	Understand and		categorical data in		may be subject to a
Understand and use the	equati	ons in three		linear combination		use the maximum		a contingency		frictional force as
zero and identity	variabl	es by use of		of independent		flow/minimum cut		table.		well as a normal
matrices, understand	the inv	erse of the		random variables		theorem.	•	Be able to apply		contact force
what is meant by equal	corres	onding		and the variance of	•	Understand that		the X^2 test (chi-		(normal reaction),
matrices.	matrix			any linear		network algorithms		squared) to a		and be able to
Know that matrix	 Interpr 	et the solution		combination of		can be explored,		contingency table.		represent the
multiplication is	or failu	re of solution		independent		understood and	•	Be able to interpret		situation in an
associative but not	geome	trically in		random variables.		tested in cases in		the results of a X^2		appropriate force
commutative.	terms	of the	•	Recognise		which the		test using tables of		diagram.
Be able to find the	arrang	ement of three		situations under		algorithm can be		critical values or	•	Understand that
matrix associated with a	planes			which the discrete		run by hand, but		the output from		the total contact
linear transformation	Be able	to find the		uniform		for practical		software.		force between
and vice versa.	interse	ction of three		distribution is likely		problems the	•	Be able to carry		surfaces may be
Understand successive	planes	when they		to be an		algorithm needs to		out a X^2 test for		expressed in terms
transformations in two	meet i	n a point.		appropriate model.		be formulated in a		goodness of fit of a		of a frictional force
dimensions and the	Know 1	hat the angle	•	Be able to calculate		way suitable for		uniform, binomial.		and a normal
connection with matrix	betwee	en two planes		probabilities using		computing power		or Poisson model.		contact force
multiplication	can be	found by		a discrete uniform		to be applied.	•	Re able to interpret		(normal reaction).
Inderstand the	consid	ering the angle		distribution.	4	Linear	-	the results of a	•	Understand that
language of vectors in	betwee	en their	•	Be able to calculate		Programming [.]		X^2 test using		the frictional force
two dimensions and	norma	s		the mean and		Understand and		tables of critical		may be modelled
three dimensions	4 Algorit	hms		variance of any	-	use the language		values or the		by $F > \mu R$ and
Bo ablo to calculate the		tand that an		given discrete		associated with		output from		that friction acts in
• Be able to calculate the	algorit	am is a finite		uniform		linear		software		the direction to
matrix and a 2 x 2		in is a mille		distribution		nrogramming	2	Matrices		oppose sliding.
matrix	sequel	ice of	3	Discrete		Po oblo to identify	5.	Po oblo to find the		Model friction
matrix.	 operat 		5.	Prohability	•	be able to identify	•	be able to find the		using
Know the meaning of	carryin	g out a		Distributions [.]		and define		inverse of a 2 x 2		$F = \mu R$ when
the terms singular and	proced		•	Becognise		variables from a				sliding occurs
non- singular as applied	a prob	em.	•	situations under		given problem.		matrix without a		Bo able to derive
to matrices.	Unders	tand that an		which the binemial	•	Be able to		calculator.	-	and use the result
Know that the	algorit	nm can be the		distribution is likely		tormulate a	•	Know the meaning		that a body on a
magnitude of the	basis fo	or a		ustribution is likely		problem as a linear		of, and be able to		that a body off a
determinant of a 2×2	 computing 	ter program.		to be an		program.		find, invariant		rougn slope

· · · · · · · · · · · · · · · · · · ·						
	 matrix gives the area scale factor of the associated transformation, and understand the significance of a zero determinant. Interpret the sign of a determinant in terms of orientation of the image. Know that the magnitude of the determinant of a 3 × 3 matrix gives the volume scale factor of the associated transformation, and understand the significance of a zero determinant. Interpret the sign of a determinant in terms of orientation of the associated transformation, and understand the significance of a zero determinant. Interpret the sign of a determinant in terms of orientation of the image. Know that det(MN) = det M × det N and the corresponding result for scale factors of transformations. Understand what is meant by an inverse matrix. Be able to calculate the inverse of a non-singular 2 × 2 matrix or 3 × 3 matrix. 	 Be able to interpriand apply algorit presented in a variety of form. Be able to repair, develop and adagiven algorithms Understand and able to use the brideas of algorithm complexity and brable to analyse the complexity of given algorithms. Know that complication of the state o	appropriate model, and be able to calculate probabilities to use the model.pt• Know and be able to use the mean and variance of a binomial distribution, $n =$ np and $v^2 = np (1 - p)$. Prove these results in particular cases.exity ong• Recognise situations under which the Poisson distribution is likely to be an appropriate model.roved ect.• Recognise situations in which both the Poisson distribution might be appropriate models.roved ect.• Recognise situations in which both the Poisson distribution might be appropriate models.roved ect.• Recognise situations in which both the Poisson distribution might be appropriate models.the the d/or• Re able to calculate probabilities using a Poisson distribution.the d/or• Know and be able to use the mean and variance of a Poisson distribution.	 Be able to recognise when an LP is in standard form Be able to graph inequalities in 2-D and identify feasible regions. Be able to recognise infeasibility. Be able to solve a 2-D LP graphically. Be able to consider the effect of modifying constraints or the objective function. Be able to solve 2- D integer LP problems graphically. Be able to use a visualisation of a 3- D LP to solve it. Be able to reduce a 3-D LP to a 2-D LP when one constraint is an equality. Simplex Method: Be able to use the simplex algorithm on an LP in understand the constraint is an 	 points and invariant lines for a linear transformation. Vectors: Be able to form and use the equation of a line in 2-D and 3-D. Be able to calculate the angle between two lines. Be able to determine whether two lines in three dimensions are parallel, skew or intersect, and to find the point of intersection if there is one Know the different ways in which two lines can intersect or not in 3-D space. Be able to calculate the angle between a line and a plane. 	 inclined at an angle a to the horizontal is on the point of slipping if µ = tan a. Be able to apply Newton's laws to situations involving friction. Dimensional Analysis Be able to find the dimensions of a quantity in terms of M, L, T. Understand that some quantities are dimensionless. Be able to determine the units of a quantity by reference to its dimensions. Be able to change the units in which a quantity is given. Be able to use dimensional analysis to check the consistency of a relationship. Use dimensional analysis to determine unknown indices in a proposed formula
	 meant by an inverse matrix. Be able to calculate the inverse of a non-singular 2 × 2 matrix or 3 × 3 matrix. Be able to use the inverse of a non-singular 2 × 2 or 3 × 3 matrix. Relate the inverse matrix to the 	 Be able to count number of comparisons and swaps needed in particular applications of sorting algorithm and relate this to complexity. Be able to reasor about a given sor algorithm. 	 the distribution. Know and be able to use the mean and variance of a Poisson distribution. Know that the sum of two or more independent Poisson distributions is also 	 Be able to use the simplex algorithm on an LP in augmented form. Understand the geometric basis for the simplex method. Recognise that if an LP includes \$ constraints then the two-stage 		 Use dimensional analysis to determine unknown indices in a proposed formula. Use a model based on dimensional analysis.

		corresponding inverse	•	Know and be able to		a Poisson		simplex method		
		transformation.		use first fit and first		distribution.		may be used;		
	•	Understand and use the		fit decreasing	•	Recognise		understand how		
		product rule for inverse	•	packing algorithms		situations under		this method works		
		matrices		and full hin		which the		and be able to set		
				strategies		geometric		up the initial		
				Bo able to count the		distribution is likely		tableau in such		
				be able to could the		to be an				
						appropriate model	•	Cuses. Ro ablo to		
				comparisons needed		appropriate model.	•			
				in particular	•	Be able to calculate		reformulate an		
				applications of		the probabilities		equality constraint		
				packing algorithms,		within a		as a		
				and relate this to		geometric		pair of inequality		
				complexity.		distribution,		constraints.		
						including	•	Recognise that if		
						cumulative		an LP has variables		
						probabilities.		which may take		
					•	Know and be able		negative values or		
						to use the mean		requires the		
						and variance of a		objective function		
						geometric		to be minimised		
						distribution.		then some initial		
					4.	Bivariate.		reformulation is		
						Measuring		required before		
						Correlation		the simplex		
					•	Understand what		algorithm may be		
					-	bivariato data are		annlied		
						and know the	•	Bo able to use slack		
						and know the	•	variables to		
						conventions for		valiables lu		
						choice of axis for		convert an LP In		
						variables in a	•	standard form to		
						scatter diagram.		augmented form.		
					•	Be able to use and	•	Understand that		
						interpret a scatter		some LPs can be		
						diagram.		solved using		
					•	Interpret a scatter		graphical		
						diagram produced		techniques or the		
						by software.		simplex method,		
					•	Be able to calculate		but for practical		
						the pmcc from raw		problems		
						data or summary		computing power		
						statistics		needs to be		
						5101151165.		applied		
								applica.	1	

			•	Know when it is	•	Know that a	
				appropriate to		spreadsheet LP	
				carry out a		solver routine, or	
				hypothesis test		other software, can	
				using Pearson's		solve an LP given in	
				product moment		standard form or.	
				correlation		in some cases in	
				coefficient		non-standard form	
			•	Bo ablo to carny	•	Ro able to interpret	
			•	Be able to carry	•	the output from a	
				out hypothesis		the output nom a	
				tests using the		spreadsneet	
				price and tables of		optimisation	
				critical values or		routine, or other	
				the <i>p-value</i> from		software, for the	
				software.		simplex method or	
			•	Use the <i>pmcc</i> as an		ILPs.	
				effect size			
			٠	Be able to calculate			
				Spearman's rank			
				correlation			
				coefficient from			
				raw data or			
				summary statistics.			
			•	Be able to carry			
				out hypothesis			
				tests using			
				Spearman's rank			
				correlation			
				coefficient and			
				tables of critical			
				values or the			
				output from			
				software			
				sonware.			
			•	Decide whether a			
				test based on r or			
				rs may be more			
				appropriate, or			
				whether neither is			
				appropriate.			
Understanding /	1. Building on prior knowledg	ge and making connections be	twee	n topics.			
Sequence of delivery							
Sequence of derivery							

	End of Topic Assessed Homework	End of Topic Assessed Homework and	Practice Papers		
	Exam Style Questions	Practice Papers	Grade Boundaries based on A Level 2019		
	Grade Boundaries based on A Level 2019	Exam Style Questions			
Assessment		Grade Boundaries based on A Level 2019			
	POP Test	POP Test	PPE		
	Past Exam Questions	Past Exam Questions	Past Exam Questions		
	Grade Boundaries based on A Level 2019	Grade Boundaries based on A Level 2019	Grade Boundaries based on A Level 2019		