Voar. 12	Curriculum Intent: OCR Product Design specification for Design & Technology: Exam and NEA. The aim of the A-Level is to build									
	and reinforce the skills both theoretical and practical that students would have learnt at GCSE. The tasks are set up to develop									
Subject:	independent thought and to encourage self-reliance. Students will learn through a range of opportunities to employ their									
	technical understanding and relate it to practical problems and solutions. One of the key differences of A-Level over GCSE is									
Product	students are expected to demonstrate not just an understanding of theoretical practices but be able to question and evaluate									
Docian	their importance and need	in the wider design context.	his is bu	illding towards the s	tudents	being able to	choose	an		
Design	appropriate NEA project th	at will be carried through to	'ear 13. I	The broad strokes of	the stru	icture is base	ed aroun	d an iterative		()
	design process which starts with the recognition and identification of a need or problem and development or their									
(0.)	understanding through primary and secondary research. From this, students should be able to outline the requirements to									
	specification to guide the it	terative design process. Once	a solutio	in has been establish	awing ai ned stud	ents are exp	ected to	nroduce a		
	workable prototype of a saleable quality and finally they should have the tools and skills required to objectively evaluate their									
	solution and recognise pot	ential for future iterations and	d improv	ements.			curvery e			
	Te	rm 1		Term 2	Term 2			Term 3		
	Theory	Practical	Theory		Practic	al	Theory	/	Practic	al
	1. How can safety be	1. Foam Modelling –	1.	What	1.	Laser	1.	Exploring	1.	Lathe –
	ensured when	Glue Gun		considerations		cutter,		Contexts		wood/m
	working with	2. Vacuum former, 3D		need to be made		prototype		that design		etal
	materials in a	printing, casting –		about the		modelling		solutions are		shaping
	workshop	Chocolate Bar		structural		– slot		intended for	2.	1 week
	environment	3. Braising, workshop		integrity of a		together/	2.	Stakeholder		design
	2. What are the	tools – wood & metal	2	design solution		joint		analysis		and
	implications of	upcycling project	2.	How products can	2	product	3.	Usability		model
	health & salety			be designed to	Ζ.	CNC		when		challene
Tonic Titles (in	product			offectively within		Fusion		nrototypes	3	NEV
order of delivery)	manufacture			their surrounding		360	4	Using 2D &	5.	
	3. What factors		3.	Opportunities		foam tov		3D		ent/cou
	influence the			through using		, product		sketching/di		rsework
	selection of			smart & modern		•		gital tools to		started
	materials that are			technologies				graphically		
	used in products		4.	Factors to be				communicat		
	4. What materials			considered when				e ideas		
	and components			investigating			5.	How		
	should be			design				industry pros		
	selected when			possibilities				use digital		
	designing &		5.	Factors to be				design tools		
	manufacturing			considered when				to		

products/prototy developing design support/com pes solutions for municate the 5 Why is it manufacture ovelocation	
pes solutions for municate the	
5 Why is it manufacture avalantian	
5. Why is it exploration,	
important to 6. Factors to innovation &	
consider consider developmen	
properties/charac manufacturing a t of ideas	
teristics or product 6. Different	
materials in 7. Factors to approaches	
design & consider when to design	
manufacture distributing to thinking to	
6. How can materials market support idea	
& processes be 8. Skills & developmen	
used to: knowledge from t	
- Make iterative other subject 7. How can	
models areas & how they designers	
- Final affect design assess	
prototypes 9. Analyse & whether a	
- Commercial evaluate products design	
products both in design & solution	
7. How is manufacturing meets its	
manufacturing process stakeholders	
organised/manag 10. Understand requirement	
ed for different technological s	
scales of developments in 8. How can	
production product design product	
8. How is quality 11. Understand past designers	
controlled & present and	
through developments in manufacture	
manufacture design rs assess	
12. Examining whether a	
lifecycles of design	
products solution	
meets the	
criteria of	
technical	
specification	
9. How do	
designers	

Key knowledge / Retrieval topics	 Material properties/charac teristics, processes, life cycle, uses. Types of manufacture that suit different material processor 	 Workshop Health & safety How to use school equipment and machinery Fusion 360 coftware % 	 Product form & function Product life cycle Product design history & key developments Smart & modern materials their properties and 	 2D Design software Modelling & prototyping using different materials Material selection & procores 	and manufacture s decide if design solutions are commerciall y viable 1. Design investigation & research (Primary & secondary) 2. User, stakeholder requirement s	5. Worksh op tools & equipm ent
	processes	additional 3D printing systems	5. Energy , energy storage 6. Sustainability	processes	 Technical specification Designers & design companies 	
Understanding / Sequence of delivery	Students first need to understand the basics of the materials they will be working with/analysing/testing in order to aid their design choices in practical projects and later in the NEA.	Practical projects require students to produce NEA style & quality pages so that they understand what is required of them against the OCR specification. Allows for the opportunity to teach them layout of pages, drawing techniques including sketching, rendering and technical drawing pages. Projects serve as a reminder of how to use workshop equipment alongside learning how to	Students now with a basic understanding of materials can apply this knowledge to manufacturing and developing design solutions. This directly links to the wider implications of design/manufacture choices in all stages of a product life cycle.	Learning how to use 2D Design opens up the possibility of using the laser cutter & CNC router. Small scale modelling and prototyping is key for testing and getting ideas across in the NEA.	Students to complete the theory side of the year by looking into stakeholders, specifications and design development and manufacture as this heavily supports the work they start on their NEA.	Quick fire design challenges with modelling requirements helps teach students about pace of work and encourages innovation and idea generation to support their NEA.

	use new machinery they might use in their NEA
Assessment	Proof of Progress (POP) tests every half term using exam questions – tests knowledge as well as exam question technique Mini projects are marked against OCR NEA mark scheme/grade boundaries NEA assessment: See OCR Product design specification: Design & Technology