Year: 13 Subject: Further Maths A level	Curriculum Intent: Some pure topics from A Level mathematics and year 12 are studied in greater depth, while some new topics are introduced. Algebraic work with series is extended. Complex numbers are developed and lead to solutions of problems in algebra, geometry and trigonometry. Matrices are used to solve systems of equations and to explore transformations. Vector methods are applied to problems involving lines and planes. Calculus techniques are extended, including the use of hyperbolic functions and polar coordinates, and culminate in the solution of differential equations. In mechanics, basic principles of forces and their moments, work and energy, impulse and momentum and centres of mass are used to model various situations, including: rigid bodies in equilibrium; particles moving under gravity or on a surface; bodies colliding with direct impact.				
	Term 1	Term 2			
Topic Titles (in order of delivery)	1.Further Vectors1.Work, Energy, Power2.Series and Induction2.Impulse and3.Further CalculusMomentum4.Maclaurin Series3.Polar Coordinates4.First OrderDifferential Equation	Numbers2.Centres of Mass2.Hyperbolic Functions3.Second Order Differential Equations	I. Review and Revise 1. Review and Revise		
Key knowledge / Retrieval topics	 Further Vectors: Be able to use the vector product in component form to give a vector perpendicular to two given vectors. Be able to use the alternative form for the vector product. Know the significance of a × b = 0. Be able to find the distance between two parallel lines and the shortest distance between two skew lines. Be able to find the distance from a point to Further Vectors: Be able to use the alternative form for the vector product. Know the significance of a × b = 0. Be able to find the distance between two skew lines. Be able to find the distance from a point to 		1. 1.		

I			
	a line in 2 or 3	Be able to calculate number has n Be able to calculate	
	dimensions.	gravitational distinct nth roots, the moment of a	
	 Be able to find the 	potential energy. and that on an couple.	
	distance from a point to	Understand when the Argand diagram Understand and be	
	a plane.	principle of these are the able to apply the	
	2. Series and Induction:	conservation of vertices of a conditions for	
	 Be able to prove 	energy may be regular n-gon. equilibrium of a	
	mathematical results by	applied and be able • Know that the rigid body.	
	contradiction.	to use it distinct <i>n</i> th roots of • Be able to identify	
	 Be able to construct and 	appropriately. $re^{i heta}$ are: whether	
	present a proof using	Understand and use equilibrium will be	
	mathematical induction.	the work-energy principle. $r_n^1 \left[cos\left(\frac{\theta + 2k\pi}{n}\right) \right]$ broken by sliding or toppling.	
	Know the difference	principle. $n \left[\frac{2}{n} \right] $ or toppling.	
	between a sequence	• Understand and use $+isin(\frac{\theta+2k\pi}{n})$] 2. Centres of Mass:	
	and a series.	the concept of the Be able to find the	
	• Know the meaning of	power of a force as For k=0,1 n-1. centre of mass of a	
	the word converge	the rate at which it • Be able to explain system of particles	
	when applied to either a	does work. why the sum of all of given position	
	sequence or a series.	2. Impulse and the nth roots is and mass.	
	• Be able to sum a simple	Momentum: zero. • Know how to	
	series using partial	Be able to calculate Understand the locate centre of	
	fractions.	the impulse of a force effect of mass by appeal to	
	3. Further Calculus:	as a vector and in multiplication by a symmetry.	
	Evaluate improper	component form. complex number • Know the positions	
	integrals where either	Understand and use on an Argand of the centres of	
	the integrand is	the concept of linear diagram. mass of a uniform	
	undefined at a value in	momentum and Be able to rod, a rectangular	
	the interval of	appreciate that it is a represent complex lamina and a	
	integration or the	vector quantity. roots of unity on triangular lamina.	
	interval of integration	Understand and use an Argand Be able to find the	
	extends to infinity.	the impulse- diagram. centre of mass of a	
	Be able to use the	momentum Be able to apply composite body by	
	method of partial	equation. complex numbers considering each	
	fractions in integration,	Understand and use to geometrical constituent part as	
	including where the	the principle that a problems. a particle at its	
	denominator has a	system subject to no 2. Hyperbolic centre of mass.	
	quadratic factor of form	external force has Functions: • Be able to use the	
	$ax^2 + c$ and one linear	constant total linear • Understand the position of the	
	term.	momentum and that definitions of centre of mass in	
	 Understand the 	this result may be hyperbolic situations involving	
	definitions of inverse	applied in any functions, know the equilibrium of	
	trigonometric functions.	direction. their domains and a rigid body.	
		ranges and be able	

Be able to differentiate	Understand the term to sketch their 3. Second Order	
inverse trigonometric	direct impact and the graphs. Differential	
functions.	assumptions made • Understand and Equations:	
4. Maclaurin Series:	when modelling use the identity • Know the language	
Be able to find the	direct impact $\cosh(2x) - $ of kinematics, and	
Maclaurin series of a	collisions. $\sinh(2x) = 1$. the relationships	
function,	Be able to apply the Be able to between the	
including the general	principle of differentiate and various variables.	
term.	conservation of linear integrate	
Know that a Maclaurin	momentum to direct hyperbolic 2nd law of motion.	
series may converge	impacts within a functions.	
only for a restricted set	system of bodies. • Understand and be equations in	
of values of x.	Know the meanings able to use the modelling in	
Be able to recognise and	of Newton's definitions of the kinematics and in	
use the Maclaurin series	Experimental Law inverse hyperbolic other contexts.	
of standard functions:	and of coefficient of functions and Be able to solve	
e^x , ln(1 + x),	restitution when know their differential	
• $sin(x), cos(x)$	applied to a direct domains and equations of the	
• and $(1+x)^n$	impact. ranges. form	
	• Understand the • Be able to derive $y'' + ay' + b = 0$,	
	significance of e = 0. and use the using the auxiliary	
	Be able to apply logarithmic forms equation.	
	Newton's of the inverse	
	Experimental Law in hyperbolic use the	
	modelling direct functions. relationship	
	impacts.	
	Be able to model of functions of the cases of the	
	situations involving form solution and the	
	direct impact using $(a^2 + x^2)^{-\frac{1}{2}}$ nature of the roots	
	both conservation of and of the auxiliary	
	linear momentum $(a^2 - x^2)^{-\frac{1}{2}}$ equation.	
	allu Newloll S	
	Experimental Law. and be able to differential	
	Understand the integrate related equations of the	
	significance of e = 1. functions by using form	
	• Understand that trigonometric $y'' + ay' + b = f(x)$,	
	when e < 1 kinetic 2 Amplications of by solving the	
	energy is not 3. Applications of homogeneous case	
	conserved during Integration: and adding a	
	impacts and be able Be able to derive particular integral	
	to find the loss of formulae for and to the	
	kinetic energy. calculate the complimentary	
	3. Polar Coordinates: volumes of the function.	

			I	
 Understand and use 	solids generated by			
polar coordinates (r,	rotating a plane	particular integrals		
θ) and be able to	region about the x-	in simple cases.		
convert from polar to	axis or the y-axis.	Understand the		
cartesian coordinates	 Understand and 	relationship		
and vice-versa.	evaluate the mean	between different		
 Be able to sketch 	value of a	cases of the		
curves with simple	function.	solution and the		
polar equations		nature of the roots		
where r is given as a		of the auxiliary		
function of θ.		equation.		
• Be able to find the		Be able to solve		
area enclosed by a		the equation for		
, polar curve		simple harmonic		
4. First Order		motion,		
Differential		$\ddot{x} = -\omega^2 x$ and be		
Equations		able to relate the		
 Understand how to 		solution to the		
introduce and define		motion.		
variables to describe		Be able to model		
a given situation in		damped		
mathematical terms.		oscillations using		
Be able to relate 1st		2nd order		
and 2nd order		differential		
derivatives to verbal		equations.		
descriptions and so		Be able to interpret		
formulate differential		the solutions of		
equations.		equations		
Know the difference		modelling damped		
between a general		oscillations in		
solution and a		words and		
particular solution.		graphically.		
Be able to find both		 Analyse and 		
general and		interpret model		
particular solutions.		situations with one		
		independent		
		variable and two		
equations where the		dependent		
integrating factor		variables which		
method is		lead to coupled 1st		
appropriate.		order simultaneous		
Be able to find an				
integrating factor and		linear differential		
understand its	l	1		

		significance in the solution of an equation. • Be able to solve an equation using an integrating factor and find both general and		equations and find the solution.		
Understanding / Sequence of delivery	1. Building on prior knowledg	particular solutions. ge and making connections be	tween topics.			
Assessment	Exam Style Questions Grade Boundaries based on A Level 2019		End of Topic Assessed Homework and Practice Papers Exam Style Questions Grade Boundaries based on A Level 2019		Practice Papers Grade Boundaries based on A Level 2019	
	POP Test Past Exam Questions Grade Boundaries based o	on A Level 2019	PPE Past Exam Questions Grade Boundaries based on A Level 20		A Level Exams	