Year 10: Chemistry	Curriculum Intent: Year 10 Chemistry tackles more complex ideas and concepts in the subject. It builds on the key knowledge from years 7,8 and 9 to link together all the areas of the subject. The key areas of particles, reactions, monitoring reactions and earth and environmental science are developed through more challenging topics such as structure and bonding, advanced chromatographic methods, mole calculations, electrolysis and trends in the periodic table. Knowledge of key industrial chemical processes is also developed Procedural knowledge and practical skills are developed further, building on experience with making salts, neutralisation, redox and displacement reaction. The curriculum in year 10 aims to bring everything together so that students have a complete understanding of the Chemistry aspect of the Combined Science course.				
	Topic 1 Particles and PT	Topic 2 Chem reactions	Topic 3 Monitoring reactions	Topic 4 Earth and environmental	
Key ideas	 revision/retrieval Explain properties of metals, ionics, simple covalents, giant covalents Select appropriate separation method TLC and GC Atomic structure and the periodic table link Rutherford's experiment Limitations of the particle model 	 revision/retrieval Mole calculations Reacting masses Conc calculations Balancing equations Formulae of ionic compounds- 3.1.1 and 3.1.2 Electrolysis of solutions Half equations Bond energy calculations Redox reactions (electrons) Neutralisation H+ and pH Dilute vs concentrated acids Strong vs weak acids 	 revision/retrieval Explain trends in group 1 Explain trends in group 7 Displacement reactions Equilibrium Changing the equilibrium position Calculating the rate of reactions from graphs and data Calculating average rate Calculating instantaneous rate 	 Extracting metals Extracting iron Extracting aluminium Phytoextraction Bioleaching 	
Sequence of Learning - Key Questions	 Everything from topic in year 9 including references to years 7+8 What is a metallic bond? Why do metals conduct electricity? 	 Everything from topic 2 in year 9 including references to years 7+8 How do you write the formulae of ionics given its ions? 	 Everything from topic 3 in year 9 including references to years 7+8 Why does group 1 get more reactive going down the group? 	 Everything from topic 4 in year 9 including references to years 7+8 How are metals found? What are the advantages and disadvantages of extracting metals? 	

4.	Why do metals have a	3.	How do you balance a	3.	Why does group 7 get	4.	How do you tell which
	high melting point?		chemical equation?		less reactive going		process to use to extract
5.	Why are metals	4.	What are the 4 state		down the group?		a metal?
	malleable?		symbols?	4.	Can you define a	5.	How does a blast
6.	Why do simple	5.	What is a mole?		displacement reaction?		furnace extract iron?
	covalents have low	6.	How do you calculate	5.	Can you write and	6.	What are the
	melting points?		moles?		balance displacement		advantages and
7.	Why don't simple	7.	How do you use mole		reactions?		disadvantages of using a
	covalents conduct		ratios to find reacting	6.	Can you write and		blast furnace?
	electricity?		masses?		balance reactions with	7.	How does electrolysis
8.	Why do ionics have a	8.	Why does hydrogen		group 1?		extract aluminium?
	high melting point?		and oxygen	7.	Can you calculate the	8.	What are the
9.	Why do ionics conduct		occasionally form		average rate of reaction		advantages and
	electricity when liquid		during electrolysis?		from data or a graph?		disadvantages of using
	but not when solid?	9.	Can you write half	8.	Can you calculate the		electrolysis?
10.	Can you explain the		equations to describe		instantaneous rate of	9.	What is
	difference in the		electrolysis?		reaction from a graph?		phytoextraction?
	properties of diamond	10.	Can you define	9.	What is equilibrium?	10.	What are the
	and graphite?		reduction and	10.	How does temperature		advantages and
11.	Can you select the		oxidation in terms of		affect equilibrium		disadvantages of
	appropriate		electrons?		position?		extracting metals with
	separation technique	11.	Can you write ionic	11.	How does pressure		phytoextraction?
	based on different		and half equations to		affect equilibrium	11.	What is bioleaching?
	scenarios?		describe redox		position?	12.	What are the
12.	What are the		reactions?				advantages and
	advantages of using	12.	Can you use bond				disadvantages of
	TLC and GC?		energies to calculate if				extracting metals using
13.	How does the periodic		a reaction is				bioleaching?
	table relate to atomic		endothermic or				
	structure and		exothermic?				
	electronic structure?	13.	What is a				
14.	How does		neutralisation				
	Rutherford's		reaction?				
	experiment prove a	14.	What is the difference				
	nucleus is small and		between dilute and				
	positive?		concentrated acids?				

	15. What are the limitations of the particle model?	15. What is the difference between strong and weak acids?16. How does the pH relate to the H+ concentration?		
Vocabulary	 Sea of electrons Metallic bond Cations Ionic bond Covalent bond Intermolecular force Distillation Fractional distillation Chromatography Crystallisation Filtration Solvent Solute Solution Soluble Insoluble TLC Gas chromatography Mobile phase Stationary phase Alpha particle Nucleus Repel Limitations 	 Balancing Formula Cation Anion Anode Cathode Cletrolysis Reduction Oxidation OILRIG PANIC Half equation Ionic equation Neutralisation Dilute Concentrated Strong acid Weak acid Dissociation Hydrogen ion pH 	 trends outer electron electrostatic attraction displacement reaction equilibrium forward reaction reverse reaction average rate instantaneous rate tangent gradient reactant product endothermic exothermic 	 extraction blast furnace electrolysis ore cryolite bauxite phytoextraction bioleaching low grade ore
Practical Skills	 Properties of metals, ionic, compounds and giant covalent, e.g. graphite – test electrical conductivity, solubility etc 	 Electrolysis of copper chloride and sodium chloride Titration style neutralisation reaction 	 Displacement reactions with metals Investigating rates of reaction following by graph drawing and calculating 	 Obtaining copper from copper carbonate Making iron from iron oxide (reduction) using non-safety matches

	 Separation techniques separating mixture of soluble and insoluble solid. Fractional distillation to separate two liquids 		instantaneous rate of reaction 3. Equilibrium – cobalt complex practical to monitor position of equilibrium	
Assessment (Related to mastery grids)	Separation practical assessment – students given a mixture to separate. 6 marker question.	Exam-style questions assessment	Badger task – 9F-4 Patterns of reactivity	Badger task – 6-B Chemistry