Year: 13	
Subject:	Product
Design	

Curriculum Intent: Students will build upon the skills and activities that they learned in Year 12, reinforcing their practical and theoretical knowledge. This is achieved through their NEA, theory based lessons and homework. Students will explain and discuss their understanding of what they have read, observed, and practiced justifying the methods and techniques used through their NEA coursework. Their knowledge will be tested through 'POP' tests and their PPE examinations.

Design	tests and their PPE examinations.					
	Term 1		Term 2		Term 3	
	1. NEA	2. NEA	1. Review of PPE's	1. Completion of	1. Exam	Course Finished
		3. Preparation for	2. NEA	NEA	Preparation	
	NEA - Reviewing	the PPE's		2. Exam	,	
	Section A and B		NEA – ordering of	Preparation	RAG of exam	
		NEA – final	materials – marking	·	content.	
	NEA – Writing a	developed design –	out and double	NEA – further		
	design specification	refer annotation	checking before	modifications – high	General exam	
	using research.	back to the	cutting. Anything	quality drawings and	technique e.g.	
		specification	that involves CAM –	links to commercial	command words,	
	Theory – drawing	highlighting	2D design/Fusion	manufacture.	highlighting key	
	techniques –	innovation and	360.	Detailed and	words.	
	isometric,	creativity in the		informative		
	orthographic.	ideas. Make links	NEA –	annotation.	Selected weak area	
		back to the research	manufacturing the		revision – exam	
Topic Titles (in order of	Strategies for coming	completed.	product, taking	NEA – changes/	questions and	
delivery)	up with ideas – using		photos at regular	tweaks to project	exam technique	
	existing products,	NEA – Final isometric	intervals. Ensure	based on feedback.		
	merging ideas,	design using CAD for	quality control	Signing of candidate	Walking/talking	
	natural forms etc.	presentation.	checks are taking	forms etc.	paper – core	
		Annotation to	place.		technical principles	
	NEA – initial ideas	include links back to		Theory – sources of		
		specification.	NEA – carry out at	polymers. From oil	Walking/talking	
	NEA – importance of		least one test of the	to workable	paper – specialist	
	annotation and	NEA – Final	product and	material. Categories	technical principles	
	linking initial ideas to	orthographic design.	complete write up.	of plastic and		
	design specification	Measurements must	Can it be compared	examples in each.	Walking/talking –	
		be accurate and	to an existing	Manufacturing	designing and	
	NEA – development	realistic – informed	product? How is the	techniques for	making principles	
	of ideas	from modelling.	success measured?	plastic e.g. injection		
				moulding.		

NEA – modelling	NEA - Manufacturing	NEA – testing the	Theory – exam
techniques –	specification - step	product and write	question based on
card/straws/play	by step for making	up. E.g. stress tests,	sourcing and
dough etc.	the product.	drop tests,	manufacturing wood
	'	waterproof etc.	and plastic. Use
NEA – modelling of	PPE Theory – sources		notes and sketches –
developed idea. High	of polymers. From oil	NEA – write up of	exam technique for
quality photos and	to workable	third party	higher end of marks.
clear outline of why	material. Categories	evaluation with	Use of key words
modelling is	of plastic and	photos. Comparison	e.g. labelling of
important. Key	examples in each.	to existing products.	injection moulding
changes based on	Manufacturing		process.
models – think	techniques for	NEA – evaluation of	
mechanisms,	plastic e.g. injection	product against	Theory – sources of
aesthetics etc.	moulding.	specification. Table	metal. From ore to a
		format with a	workable material.
	PPE Theory – sources	numerical value to	Categories of metal
	of metal. From ore to	make it comparable	and manufacturing
	a workable material.	to an existing	techniques e.g.
	Categories of metal	product.	casting.
	and manufacturing		
	techniques e.g.	NEA – evaluation of	Theory – scales of
	casting.	product against	production. Link to
		specification. Table	plastics, wood and
	PPE Theory – scales	format with a	metal product. E.g.
	of production. Link	numerical value to	would you use
	to plastics, wood and	make it comparable	injection moulding
	metal product. E.g.	to an existing	for a one-off
	would you use	product.	product.
	injection moulding		
	for a one-off	NEA – evaluation of	Theory – assessment
	product.	product against	of specialist
		specification. Table	technical principles
	PPE Theory - Human	format with a	questions. Add to
	Factors &	numerical value to	answers. How can
	Environmental	make it comparable	your answer be
	Issues.	to an existing	improved? Show
		product.	

				good answers to		
			NEA – further	group.		
			modifications – high	Біоир.		
			quality drawings and			
			links to commercial			
			manufacture.			
	Iterative Design	5. Material	8. Viability of design	Principles of Design	Problem Solving in	
	Project	considerations	solutions	Filliciples of Design	Design	
	FTOJECT	6. Technical	9. Health and safety.	This paper is set out	Design	
	The 'Iterative Design	understanding	3. Health and Salety.	through four sets of	This component	
	Project' requires	7. Manufacturing		questions that	has a series of	
	learners to	processes and		predominantly cover	longer answer	
	undertake a	techniques		technical principles.	questions that	
	substantial design,	techniques		Key Topics:	require learners to	
	make and evaluate			analyse existing	demonstrate their	
				products		
	project centred on the iterative			• demonstrate	problem solving and critical	
	processes of explore,			applied	evaluation skills.	
	create and evaluate.			mathematical skills		
				demonstrate their	Key Topics:	
	Learners identify a				apply their	
Key knowledge / Retrieval	design opportunity			technical knowledge	knowledge,	
topics	or problem from a			of materials,	understanding and	
•	context of their own			product	skills of designing	
	choice, and create a			functionality,	and manufacturing	
	portfolio of evidence			manufacturing	prototypes and	
	in real time through			processes and	products	
	the project to			techniques	• demonstrate	
	demonstrate their			demonstrate their	their higher	
	competence.			understanding of	thinking skills to	
	4 11 116 1			wider social, moral	solve problems and	
	1. Identifying			and environmental	evaluate situations	
	requirements			issues that impact	and suitability of	
	2. Learning from			on the design and	design solutions.	
	existing products			manufacturing		
	and practice			industries.		
	3. Implications of					
	wider issues					

	4. Design thinking					
Understanding / Sequence of delivery	and communication Continuation of NEA of chosen 'Iterative Design' Design Opportunity from Year 12. Review: Strand 1 – Explore (AO1) Strand 2 – Create: Design Thinking (AO2) NEA Strand 3 – Create: Design Communication (AO2)	Strand 3 – Create: Design Communication (AO2) Strand 4 – Create: Final Prototype(s) (AO2)	Strand 4 – Create: Final Prototype(s) (AO2)	Strand 4 – Create: Final Prototype(s) (AO2) Strand 5 – Evaluate (AO3) Exam Preparation drawing from information from across the strands. Reviewing their technical knowledge.	Exam Preparation drawing from information from across the strands. Reviewing their ability to apply their technical knowledge to problem solving.	
Assessment	Grade: NEA RAG Feedback for individuals. Generic Feedback All in line with Exam Board POP test using past A level questions, marked using mark scheme. Grades predicted using 2021 grade boundaries.	Grade: NEA RAG Feedback for individuals. Generic Feedback All in line with Exam Board PPE Nov/Dec 2020 paper marked and grades awarded using Exam Board mark scheme and 2021 grade boundaries.	Grade: NEA RAG Feedback for individuals. Generic Feedback All in line with Exam Board POP test using past A level questions, marked using mark scheme. Grades predicted using 2021 grade boundaries.	Grade: NEA RAG Feedback for individuals. Generic Feedback All in line with Exam Board Revision: Combination of focused exam questions and past papers, graded using relevant years grade boundaries.	Grade: Revision Combination of focused exam questions and past papers, graded using relevant years grade boundaries.	