Year 11: Chemistry Separate Science

Curriculum Intent: Year 11 Separate Chemistry looks to build on the foundation established in the Combined Science course. The more complex topics covered include titrations and quantitative analysis, equilibrium and industrial processes, qualitative analysis including testing for ions and basic organic chemistry. The knowledge gained provides students with a deeper insight into the subject, allowing them to tackle more complex problems and questions which link different areas. It also builds a solid knowledge base for progression to A level chemistry. Practical skills include qualitative and quantitative analysis through ion testing and carrying out titrations and volumetric calculations.

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1
	Module C5- monitoring &	Module C6 – Global Challenges	Revision and	Revision and	Students finish their
	controlling reactions	 Producing electricity 	consolidation	consolidation	GCSE exams
	 Theoretical yield 	• Alloys			
	 Percentage yield 	 Corrosion 			
	 Atom economy 	 Different materials 		Students begin	
	 Making ethanol 	Module C4 – predicting chemical		their GCSE	
Key ideas and	 Titration procedure 	reactions		exams	
Sequence of	 Titration calculations 	 Transition metals 			
Learning	 Gas calculations 	 Cation tests 			
_	Module C6 – Global Challenges	 Anion tests 			
	 Haber process 	 Instrumental methods 			
	 Fertilisers 	Module 2- elements, compounds			
	 Making fertilisers 	and materials			
	Contact process	 Nanoparticles 			
	1. How do you calculate	Describe a fuel cell and	Students will review	Students will	
	theoretical and % yield?	explain how it generates	their PPE exam papers	prepare for their	
	2. How do you calculate	electricity	in detail to identify	GCSE exams in	
	atom economy?	2. What is an alloy?	strengths and	lessons with their	
	3. How must chemists	3. What is corrosion and how	weaknesses	teacher.	
	consider yield and atom	can it be			
Key Questions	economy when designing	prevented/minimised?	Students will then		
	processes?	4. What is a composite	prepare for their GCSE		
	4. Explain the two methods	material?	exams in lessons with		
	of producing ethanol –	5. How do you select suitable	their teacher.		
	fermentation and	materials for different	They will also have		
	hydration of ethene	jobs?	lectures for each		
			module.		

	 5. Comparing the two methods of producing ethanol 6. How do you carry out a titration and record results? 7. How do you calculate an unknown concentration from titration results? 8. How do you use V=24n to calculate moles and volumes of gas? 9. What is the Haber process? 10. Explain the optimum conditions for the Haber process 11. Why are fertilisers important and what chemicals make good fertilisers? 12. Describe the contact process for making sulfuric acid 6. What are the properties and uses of the transition metals? 7. How do you test for cations using flame tests? 8. How do you test for sulfate ions? 10. How do you test for halide ions? 11. Explain the use of instrumental methods such as IR spectroscopy, Mass spectrometry and Gas Chromatography 12. Explain the uses of nanoparticles 	
Vocabulary	 Yield Theoretical Actual Atom economy Redox Titration Concordant Oxidation Burette Pipette Rusting Titre Equilibrium Shift Pressure Composite materials Ceramics 	

 Concentration Fermentation Hydration Catalyst Contact Process Haber Process 	 Transition metals Cations Precipitate Flame test Anion Infra-red spectroscopy Absorption Mass spectrometry Molecular ion Fragment Gas chromatography Retention time Stationary phase Mobile phase
Fermentation distillation of 6 Titration – find unknown cond of solutions Recording result calculating suit titres Making salts, I and to titration	 Cations: flame tests, NaOH precipitation Anions: Halide (silver nitrate), sulfate (barium chloride) Carbonate