Year 12: Chemistry	Curriculum Intent: Students follow the two-year OCR A-Level (A) Chemistry specification building on their existing knowledge from GCSE. Year 12 focuses on the foundations in chemistry in the autumn term; atomic structure, structure and bonding, amount of substance, periodic trends and titration. Spring term starts to develop the areas of organic and physical chemistry to prepare for some more difficult concepts. Basic organic nomenclature and reactions of functional groups, reaction mechanisms and synthesis of organic compounds form the majority of what is learnt, with key practical skills and techniques being developed alongside this. This consolidates the base knowledge needed to move onto more complex aromatic chemistry and multi-step synthesis in year 13. In Physical chemistry, concepts such as equilibrium, rates, the Boltzmann distribution and enthalpy are developed beyond the simple understanding from GCSE. This will lead onto more difficult mathematical ideas related to physical chemistry, such as entropy, Gibbs free energy and equilibrium constants.						
	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2	
Key ideas	 Module 2 Atomic structure Amount of substance Structure and bonding Shapes of molecules Intermolecular forces 	 Module 2 Neutralisation reactions and titration Redox Periodic trends and patterns Module 4 Basic organic nomenclature 	 Module 3 Group 2 & group 7 Qualitative analysis Enthalpy changes Module 4 Curly arrow mechanisms Alkanes, alkenes, halogenoalkanes 	 Module 3 Hess' Law Rates and the Boltzmann distribution Dynamic equilibrium and Le Chatelier's principle Module 4 Nucleophilic substitution Alcohols IR and Mass Spec 	 Exam preparation and revision PPEs Module 5 Enthalpy Module 6 Benzene and aromatic compounds 	 Born-Haber cycles Enthalpy of hydration Nitration of benzene 	
Sequence of Learning (taught by 2 teachers)	 Module 2 Atomic structure, isotopes and formula mass Electron configurations, spdf notation The mole and reacting masses, gas volumes and concentration 	 Module 2 Strong and weak acids Neutralisation Acid-base titrations Shapes of molecules and ions, electron pair repulsion theory 	 Module 3 Group 2 and group 7 trends. Reactivity and reactivity of group 2 compounds Qualitative analysis Module 4 Isomerism and stereoisomerism 	 Module 3 Enthalpy change of combustion and formation Hess' law and enthalpy cycles Enthalpy change of neutralisations Rates and collision theory, the 	Examination preparation • PPE DIRT Module 5 • Equilibrium constant and calculations	 PAG catch-up and round up Born-Haber cycles and lattice enthalpyc Enthalpy of hydration 	

	 % yield and atom economy lonic and covalent bonding, properties of ionic and covalent materials 	 Electronegativity, bond polarity, intermolecular forces including hydrogen bonding Metallic and giant covalent structures Periodicity and explaining trends in ionisation energy and melting point Oxidation numbers and redox reactions Module 4 Basic organic nomenclature, structural formula, displayed formula, skeletal formula 	 Alkanes and reactions of alkanes. Combustion and free-radical substitution Alkenes and reactions of alkenes. Curly arrow mechanism for electrophilic addition Halogenoalkanes and the hydrolysis of halogenoalkanes 	 Boltzmann distribution Dynamic equilibrium and Le Chatelier's principle Module 4 Nucleophilic substitution of halogenoalkanes Alcohols; classification and properties Oxidation reactions of alcohols using reflux and distillation Analytical techniques; IR and Mass Spectrometry 	 Module 6 Benzene structure and aromatic compounds 	 Module 6 Electrophilic substitution of benzene Nitration of benzene 		
Vocabulary	The list of key words is too numerous for inclusion here. The recommended course textbook provides a complete Glossary of key words							
Practical Skills	PAG TASKS: 1.1 – Determination of the composition of copper (II) carbonate 1.2 – Determination of the relative atomic mass of magnesium 1.3 – Determination of the formula of magnesium oxide	PAG TASKS: 2.1 – Determination of the concentration of hydrochloric acid 2.2 – Determination of the molar mass of an acid 2.3 – Identification of an unknown carbonate	PAG TASKS: 4.1 – Identifying unknowns 3.1 – Determination of the enthalpy change of neutralisation	PAG TASKS: 3.3 – Determination of an enthalpy change of combustion 3.2- Hess's Law 5.1 – Synthesis of a halogenoalkane 5.3 – Oxidation of ethanol	PAG TASKS: 5.2 – Preparation of cyclohexene	6.3 – Nitration of methyl benzoate		