| Year | | |----------------|---| | 12: | | | Physics | , | **Curriculum Intent:** Students follow the two-year OCR A-Level (A) Physics specification building on their existing knowledge from GCSE. In the early stages of the course, students are given a grounding in some of the basic skills they will need for the course such as the treatment of experimental data. Pupils will then study Module 3 and 4 of the OCR specification up to their PPEs. Some topics from Module 5 are also introduced towards the end of the year. Learning is supported by practical work and students will complete approximately 10 practical assessments (PAGs) during the year which count towards their final qualification. Students are taught by 2 teachers | • | final qualification. Student | | | | | | |--|---|--|--|--|--|--| | | Autumn 1 | Autumn 2 | Spring 1 | Spring 2 | Summer 1 | Summer 2 | | Key ideas | Module 1 and 2 Homogenous equations Uncertainties Module 3 Motion in one and two dimensions Module 4 Charges, current and resistance | Module 3 Forces and motion Force in action Module 4 Energy and power in circuits Electrical circuits | Module 3 Work, energy and power Materials Module 4 Wave properties Wave refraction Wave interference | Newton's laws of motion and momentum Module 4 Stationary waves Diffraction gratings | Revision for PPE
exams and PPE
Exams | Module 4 | | Sequence of
Learning
(taught by 2
teachers) | Module 1 and 2 Experimental uncertainty SI base units and homogeneity of units Module 3 Vectors and scalars Motion graphs SUVAT equations Stopping distances Freefall Projectile motion Module 4 Charge and current Emfs and pds Resistance IV characteristics LDR & thermistors | Newton's laws Terminal velocity Equilibrium Moments Density Pressure and buoyancy Module 4 Electrical power Cost of electricity Kirchhoff's laws Resistance in series & parallel Analysing circuits | Module 3 Conservation of energy Power & efficiency Work done Materials Hooke's law Young's Modulus Deforming materials Module 4 wave basics wave phase wave speed and intensity EM waves Polarisation Refraction | Module 3 Newton's Laws Momentum Impulse Collisions Module 4 Stationary waves in strings and pipes Diffraction grating | PPE exams | Module 4 Photon energy Photelectric effect Wave particle duality Module 5 Temperature Heat capacities Kinetic theory of gases Gas laws and the ideal gas equation Boltzmann constant | | | Resistivity | Internal resistance potential divider circuits sensing circuits | Total internal reflection Interference Young's Double Slit experiment | | | | | |-------------------------------------|---|---|---|-------------------------------|--|--|--| | Vocabulary | The list of key words is too numerous for inclusion here. The recommended course textbook provides a complete Glossary of key words | | | | | | | | Practical Skills
(relevant PAGs) | PAG 1.3 – braking distances | PAG 3.1 – resistivity
of a metal
PAG 3.3 – power
from a cell
PAG 4.1 – resistor
combinations | PAG 2.1 – Young
Modulus
PAG 5.3 –
oscilloscopes | PAG 5.1 – diffraction grating | | PAG 6.1- Planck's
constant
PAG 8.2 Boyles law
PAG 12.2 research
report | |