Year: 12 Subject: Maths A level	Curriculum Intent: Students will understand mathematics and mathematical processes in a way that promotes confidence, fosters enjoyment and provides a strong foundation for progress to further study. Students to build on their understanding of GCSE maths topics, especially algebra in the first term in order to develop solid foundatons for the more challenging topics in year 13. During year 12 students will be introduced to statistical techniques involving probability and hypothesis testing, and to basic mechanics involving kinematics and forces. Throughout the year students will develop their use of mathematical language and learn to produce work with sufficently detailed solutions. As each new topic is met, links to previous topics will be met as the students build upon this knowledge to solve more complex problems. All assessments will be graded A* to E depending on a percentage grade boundary based on the exam grade boundaries from 2019 and 2022						
Topic Titles (in order of delivery)	Te 1. Indices and Surds 2. Quadratics 3. Polynomials 4. Graphs 5. Coordinate Geometry	rm 1 1. Kinematics 1 2. SUVAT 3. Vectors 4. Forces and Motion 5. Connected Particles	Te 1. Working With Data 2. Binomial Expansion 3. Probability 4. Hypothesis Testing 5. Trigonometry	rm 2 1. Differentiation 2. Integration 3. Kinematics 2 4. Logarithms 5. Exponential Models	I. Radian Measure 2. Further Trigonometry 3. Functions 4. Further Transformations	 Rational Functions General Binomial Expansion Triangle Geometry Radian Measure Cont. Calculus of Exponential and Trig Functions 	
Key knowledge / Retrieval topics	 Indices and Surds: Understand and be able to use the laws of indices for all rational exponents. Be able to use and manipulate surds, including rationalising the denominator. Quadratics: Be able to work with quadratic functions and their	 Kinematics 1 Understand and be able to use the language of kinematics: position, displacement, distance, distance travelled, velocity, speed, acceleration, equation of motion SUVAT: Understand and be able to use the fundamental quantities and units 	 Working with Data: Understand and be able to use the terms 'population' and 'sample'. Be able to use samples to make informal inferences about the population. Understand and be able to use sampling techniques, 	 Differentiation: Understand and be able to use the derivative of f(x) as the gradient of the tangent to the graph of y=f(x) at a general point (x,y). Be able to show differentiation from first principles for small positive integer powers of x. 	 Radian Measure: Be able to work with radian measure, including use for arc length and area of sector. Know and be able to use exact values of sin θ and cos θ for θ = 0, ¹/₆ π, ¹/₄ π, ¹/₃ π, π and multiples thereof., and exact values of tan θ for θ = 0, ¹/₆ π, ¹/₄ π, ¹/₃ π, π and multiples thereof. 	 Rational Functions: Be able to decompose rational functions into partial fractions (denominators not more complicated than squared linear terms and with no more than 3 terms, numerators constant or linear) General Binomial Expansion: 	

	graphs and the	in the CL system:	including simple		De able ta	2			De able te autor l
	graphs, and the discriminant	in the S.I. system: length (in metres),	including simple random sampling	•	Be able to differentiate x^n , for	2. •	Further Trigonometry: Understand and be	•	Be able to extend the binomial
		time (in seconds),	and opportunity			•	able to use the		expansion of $(a +$
1	the square of the	mass (in kilograms).	sampling.		rational values of n,		definitions of secant		$bx)^n$ to any
	guadratic •	Understand and be	Be able to select or		and related		$(sec \theta)$, cosecant		rational <i>n</i> , including
	polynomial	able to use derived	critique sampling		constant multiples,		(cosec θ) and		its use for
• •		quantities and units:	techniques in the		sums and		cotangent(<i>cot</i> θ) and		approximation.
		velocity (m/s or m s ⁻	context of solving a		differences.		of $\arcsin \theta$, $\arccos \theta$	•	Know that the
	quadratic equations	¹), acceleration	statistical problem,	•	Understand and be		and $\arctan \theta$ and		expansion is valid
	including quadratic	(m/s ² or m s ⁻²), force	including		able to use the		their relationships to		for $\left \frac{bx}{a}\right < 1$.
	equations in a	(N), weight (N).	understanding that		gradient of the		$sin \theta$, $cos \theta$ and $tan \theta$		
	function of the 3.	Understand, use	different samples		tangent at a point		respectively.	-	Triangle Coometru
	unknown.	and derive the	can lead to		where $x = a$ as:	•	Understand the		Triangle Geometry: Understand and be
•	 Be able to solve 	formulae for	different	•	the limit of the		graphs of the		able to use the sine
	linear and quadratic	constant	conclusions about		gradient of a chord		trigonometric		and cosine rules.
	inequalities in a	acceleration for	the population.		as x tends to a		functions and		Understand and be
	single variable and	motion in a straight	Be able to interpret	•	a rate of change of y		determine their		able to use the area
	interpret such	line:	tables and		with respect to x.		ranges and domains.		of a triangle in the
	inequalities	v = u + at	diagrams for single-	•	Understand and be	•	Understand and be		form $\frac{1}{2}ab \sin C$
	graphically,	$s = ut + \frac{1}{2}at^2$	variable data.		able to sketch the		able to use $sec^2 \theta \equiv$		$\frac{10}{2}$
	including	1 2	Understand that		gradient function		$1 + tan^2 \theta$ and	•	Radian Measure
	inequalities with	$s = \frac{1}{2}(u+v)t$ $u^2 = u^2 + 2as$	area in a histogram		for a given curve.		$\csc^2\theta \equiv 1 + \cot^2\theta$	•	cont.:
	brackets and	v - u + 2us	represents	•	Be able to identify	•	Understand and be	•	Understand and be
	fractions.	1	frequency	-			able to use double		
↓ ●		2					0		
			-						
	•		U		0				approximations of
	, 0	vectors in two	,	•					sine, cosine and
			0						tangent:
,	•		•						$\sin\theta \approx \theta$,
		-	U	•			0 1		$\cos\theta \approx 1 - \frac{1}{2}\theta^2$
						•			2
					second derivative as	-			,
					the rate of change				
	1		understand		of gradient.				
	3. Polynomials:		informal	•	Be able to apply			•	Calculus of
	•	_	interpretation of		differentiation to		•		
	maninulata	-	correlation.		find the gradient at		$R\sin(\theta \pm \alpha)$.		•
	polynomials		• Be able to		a point on a curve	•	Be able to construct	•	Be able to
	algebraically.		understand that		and the equations		proofs involving		differentiate e^{kx}
		o ,	correlation does		of tangents and		trigonometric		and a^{kx} , and
					normals to a curve.				related sums,
	 Be able to express solutions through correct use of 'and' and 'or', or through set notation. Be able to represent linear and quadratic inequalities such as $y > x + 1$ and $y > ax^2 + bx + c$ graphically. Polynomials: Be able to manipulate polynomials 	Be able to use	 Be able to interpret scatter diagrams and regression lines for bivariate data, including recognition of scatter diagrams which include distinct sections of the population. Be able to understand informal interpretation of correlation. Be able to understand that 	•	where functions are increasing or decreasing. Understand and be able to find second derivatives. Understand and be able to use the second derivative as the rate of change of gradient. Be able to apply differentiation to find the gradient at a point on a curve and the equations of tangents and	•	angle formulae and the formulae for $sin(A \pm B)$, $cos(A \pm B)$ and $tan(A \pm B)$. Understand the geometrical proofs of these formulae. Understand and be able to use expressions for $a cos \theta + b sin \theta$ in the equivalent forms of $R cos(\theta \pm \alpha)$ or $R sin(\theta \pm \alpha)$. Be able to construct proofs involving	•	sine, cosine and tangent: $sin \theta \approx \theta$, $cos \theta \approx 1 - \frac{1}{2}\theta^2$, $tan \theta \approx \theta$, where θ is in radians Calculus of exponential and trig functions: Be able to differentiate e^{kx} and a^{kx} , and

4. 6 4. 6 4. 6 4. 6 4. 6 4. 6 5 6 8 6 8 6 7 9 1 1 1 1 1 1 1 1 1 1 1 1 1	Be able to simplify rationalof vector addition and multiplication by scalars and understand their geometrical interpretations.Orderstand and be able to use graphs of functions.understand their geometrical interpretations.Orderstand and be able to use graphs of functions.Understand and be able to use position vectors.Outlong bolynomials.Understand and be able to sketch curves defined by wet ax and $y = \frac{a}{x^2}$ including their vertical and horizontal asymptotes).Be able to calculate the distance between two points represented by position vectors.Be able to interpret he algebraic solution of equations graphically.Further Vectors: Be able to use vectors in three dimensions.5.Forces and Motion: oncept and vector nature of a force.Understand and be oble to useUnderstand and be	 mean, median, mode, percentile, quartile, inter- quartile range, standard deviation and variance. Be able to calculate mean and standard deviation from a list of data, from summary statistics or from a frequency distribution, using calculator statistical functions. Recognise and be able to interpret possible outliers in data sets and statistical diagrams. Be able to select or 	 Be able to apply differentiation to find and classify stationary points on a curve as either maxima or minima. Integration: Know and be able to use the fundamental theorem of calculus. Be able to integrate xⁿ where n ≠ -1 and related sums, differences and constant multiples. Be able to evaluate definite integrals. Be able to use a definite integral to find the area between a curve and the x-axis. Kinematics 2: Understand, use and interpret graphs 	 functions and identities. Be able to use trigonometric functions to solve problems in context, including problems involving vectors, kinematics and forces. Functions: Understand the effect of combinations of transformations on the graph of y = f(x) including sketching associated graphs, describing transformations and finding relevant equations. Understand and be able to use inverse functions and their graphs, and composite functions. Know the condition for the inverse function to exist and be able to find the inverse of a function either 	 differences and constant multiples Be able to differentiate sin k x, cos k x, tan k x and related sums, differences and constant multiples. Be able to show differentiation from first principles for sin x and cos x. Understand and be able to use the derivative of ln x
 C C<	curves defined by $y = \frac{a}{x}$ and $y = \frac{a}{x^2}$ including their vertical and horizontal asymptotes). Be able to interpret the algebraic colution of equations graphically. Be able to use ntersection points of graphs to solve equations. Juderstand and be able to use proportional elationships and heir graphs. $y = \frac{a}{x}$ and $y = \frac{a}{x^2}$ $y = \frac{a}{x^2}$ y =	 Be able to calculate mean and standard deviation from a list of data, from summary statistics or from a frequency distribution, using calculator statistical functions. Recognise and be able to interpret possible outliers in data sets and statistical diagrams. Be able to select or critique data presentation techniques in the 	 xⁿ where n ≠ -1 and related sums, differences and constant multiples. Be able to evaluate definite integrals. Be able to use a definite integral to find the area between a curve and the x-axis. Kinematics 2: Understand, use 	 the graph of y = f(x) including sketching associated graphs, describing transformations and finding relevant equations. Understand and be able to use inverse functions and their graphs, and composite functions. Know the condition for the inverse function to exist and be able to find the inverse of a function either graphically, by reflection in the line y = x, or algebraically. Be able to use 	 Understand and be able to use the
• L a e s ir y	CoordinateNewton's secondGeometry:Iaw $(F = ma)$ forUnderstand and beine for bodies ofable to use theine for bodies ofequation of aconstant masstraight line,moving under theaction of constantforces. $y = mx + c, y - y_1 = m(x - x_1)$ forces.	data, including	and velocity-time graphs, and in particular understand and be able to use the facts that the gradient of a displacement-time graph represents	 be able to use functions in modelling. Be able to sketch the graph of the modulus of a linear function involving a single modulus sign. Be able to sketch the graph of the modulus 	

Г	and an the tr	a Dissioned I II	hinomial average	the velocity the	of a linear function
	and $ax + by + c =$	Understand and be	binomial expansion	the velocity, the	of a linear function
	0 De able te vez the	able to use	of $(a + bx)^n$ for	gradient of a	involving a single
	Be able to use the	Newton's second	positive integer n	velocity-time graph	modulus sign.
	gradient conditions	law ($F = ma$) in	and the notations	represents the	Understand and be
	for two straight	simple cases of	$n!$ and ${}^{n}C_{r}$, ${}_{n}C_{r}$	acceleration, and	able to use the
	lines to be parallel	forces given as two	,	the area between	definition of a
	or perpendicular.	dimensional vectors.	or $\binom{n}{r}$, with	the graph and the	function.
	 Be able to use 	Understand and be	${}^{n}C_{0} = {}^{n}C_{n} = 1.$	time axis for a	Understand and be
	straight line models	able to use the	Understand and know	velocity-time graph	able to use the
	in a variety of	weight ($W = mg$)	the link to binomial	represents the	modulus function,
	contexts.	of a body to model	probabilities.	displacement.	including the notation
	1	the motion in a	3. Probability:	 Be able to use 	x , and use relations
	 Understand and be 	straight line under	Understand and be	differentiation and	such as $ a = b \Leftrightarrow a^2 =$
	able to use the	gravity.	able to use	integration with	b^2 and $ x-a < b \Leftrightarrow a -$
	coordinate	Understand the	mutually exclusive	respect to time in	b < x < a + b in the
	geometry of a circle	gravitational	and independent	one dimension to	course of solving
	including using the	acceleration, g, and	events when	solve simple	equations and
	equation of a circle	its value in S.I. units	calculating	problems	inequalities.
	in the form	to varying degrees	probabilities.	concerning the	4. Further
	$\frac{(x-a)^2 + (y-b)^2}{r^2} =$	of accuracy.	Be able to use	displacement,	Transformations:
	Be able to complete	Understand and be	appropriate	velocity and	Understand the effect
	the square to find	able to use	diagrams to assist	acceleration of a	of simple
	the centre and	Newton's third law.	in the calculation of	particle:	transformations on
	radius of a circle.	Understand and be	probabilities.	$v = \frac{ds}{dt}$	the graph of $y = f(x)$
	 Be able to use the 	able to use the	Understand and be	đt	including sketching
	following circle	concept of a normal	able to use simple,	$dv d^2s$	associated graphs,
	properties in the	reaction force	finite, discrete	$a = \frac{dv}{dt} = \frac{d^2s}{dt^2}$	describing
	context of	Be able to use the	probability	ai at-	transformations and
	problems in	model of a 'smooth'	distributions,	$s = \int v dt$ and	finding relevant
	coordinate	contact and	defined in the form	, C	equations:
	geometry:	understand the	of a table or a	$v = \int adt$	y = af(x),
	the angle in a	limitations of the	formula such as:	J	y = f(x) + a,
		model.	P(X = x) = 0.05x(x + x)	7. Logarithms:	y = f(x + a) and
	semicircle is a right	Understand the	1)	Know and use the	y=f(ax),
	angle, ➤ the perpendicular	concept of a	for $x = 1,2,3$.	definition of $log_a x$	for any real <i>a</i> .
	from the centre of	frictional force and	Understand and be	(for $x > 0$) as the	
	a circle to a chord	be able to apply it in	able to use the	inverse of a^x (for all	
	bisects the chord.	contexts where the	binomial	x), where a is	
	 bisects the chord, the radius of a 	force is given in	distribution as a	positive.	
		vector or	model	 Understand and be 	
	circle at a given	component form, or	Be able to calculate	able to use the laws	
	point on its circumference is	the magnitude and	probabilities using		
			the binomial	of logarithms:	
	perpendicular to	1			

· · · ·			11 · · · · · · ·	1			
	angent to the direction of the		distribution, using		$g_a x + \log_a y = \log_a(xy)$		
	e at that point. force are given.		appropriate	la	$\log_a x - \log_a y = \log_a \left(\frac{x}{y}\right)$		
	angle in a 6. Connected		calculator		$k \log_a x = \log_a x^k$		
semio	circle is a right Particles :		functions.		(including, for		
angle		4.	Hypothesis		example, $k = -1$		
➤ the p	perpendicular concept of		Testing:		and $k = -\frac{1}{2}$).		
from	the centre of equilibrium	•	Understand and be	•	Be able to solve		
a circ	cle to a chord together with one		able to use the		equations of the		
bisec	cts the chord, dimensional motion		language of		form $a^x = b$ for		
> the ra	adius of a in a straight line to		statistical		a > 0.		
circle	e at a given solve problems that		hypothesis testing,				
point	t on its involve connected		developed through	8.	Exponential		
circu	mference is particles and		a binomial model:		Models:		
perpe	endicular to smooth pulleys.		null hypothesis,	•	Know and use the		
the ta	angent to the Be able to solve		alternative		function a^x and its		
circle	e at that point. problems involving		hypothesis,		graph, where a is		
	simple cases of		significance level,		positive.		
	equilibrium of		test statistic, 1-tail	•	Know that the		
	forces on a particle		test, 2-tail test,		gradient of e^{kx} is		
	in two dimensions		critical value,		equal to ke^{kx} and		
	using vectors,		critical region,		hence understand		
	including connected		acceptance region,		why the exponential		
	particles and		p-value.		model is suitable in		
	smooth pulleys.	•	Be able to conduct		many applications.		
			a statistical	•	Know and use the		
			hypothesis test for		function <i>ln x</i> and its		
			the proportion in		graph.		
			the binomial	•	Know and use $ln x$		
			distribution and		as the inverse		
			interpret the		function of e^x		
			results in context.		Be able to use		
		•	Understand that a		logarithmic graphs		
			sample is being		to estimate		
			used to make an		parameters in		
			inference about the		relationships of the		
			population and		form $y = ax^n$ and		
			appreciate that the		$y = kb^x$, given data		
			significance level is		$y = k D^{*}$, given data for x and y.		
			the probability of		Understand and be		
			incorrectly		able to use		
			rejecting the null		exponential growth		
			hypothesis.		and decay and use		
		5.	Trigonometry:				
		_	5 1		the exponential		

		 Understand and be able to use the definitions of sine, cosine and tangent for all arguments. Understand and be able to use the sine, cosine and tangent functions, their graphs, symmetries and periodicities. Understand and be able to use tan $\theta \equiv \frac{\sin \theta}{\cos \theta}$ and $\sin^2 \theta + \cos^2 \theta \equiv 1$ Be able to solve simple trigonometric equations in a given interval, including quadratic equations in $sin \theta$, $cos \theta$ and and $tan \theta$ equations in $sin \eta$, $cos \theta$ and and $tan \theta$ equations in $sin \eta$, and $cos \theta$ and and $tan \theta$ equations in $sin \eta$, and $cos \theta$ and and $tan \theta$ equations in $sin \eta$, and $cos \theta$ and and $tan \theta$ equations in $sin \eta$, $cos \theta$ and and $tan \theta$ equations in $sin \theta$, $cos \theta$ and and $tan \theta$ equations involving multiples of the unknown angle. 	
Understanding / Sequence of delivery	 Building on prior knowledge and making connection Problem solving embedded, including in use of example. Ensure understanding of detail required in responsion 	•	l words
Assessment	End of Topic Assessed Homework on paper or online via Integral Exam Style Questions	End of Topic Assessed Homework on paper or online via Integral Exam Style Questions	End of Topic Assessed Homework on paper or online via Integral Exam Style Questions
	POP Test	Topic tests	PPE

F	Past Exam Questions	Past Exam Questions	Past Exam Questions		
	Grade Boundaries based on A Level 2019 &	Grade Boundaries based on A Level 2019 &	Grade Boundaries based on A Level 2019 &		
2	2022	2022	2022		